We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability $p_{i}\in[0,1]$, independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is potential. Then, we compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior. It turns out that the price of anarchy as a function of the maximum participation probability $p=\max_{i} p_{i}$ is a nondecreasing function. The worst case is attained when players have the same participation probabilities $p_{i}\equiv p$. For the case of affine costs, we provide an analytic expression for the parameterized price of anarchy as a function of $p$. This function is continuous on $(0,1]$, is equal to $4/3$ for $0<p\leq 1/4$, and increases towards $5/2$ when $p\to 1$. Our work can be interpreted as providing a continuous transition between the price of anarchy of nonatomic and atomic games, which are the extremes of the price of anarchy function we characterize. We show that these bounds are tight and are attained on routing games -- as opposed to general congestion games -- with purely linear costs (i.e., with no constant terms).
翻译:我们考虑一个原子拥堵游戏,让每个玩家以外在和已知的概率 $p ⁇ i ⁇ in[0,1]美元参与游戏,不受其他人的影响,或者不参与,不承担任何费用。我们首先证明由此产生的游戏是潜在的。然后,我们计算无政府状态的参数价格,以说明需求不确定性对自私行为效率的影响。结果发现,无政府状态的价格是最大参与概率$p ⁇ max ⁇ i}p ⁇ i}p ⁇ i}的一个函数,它是一个非声明性功能。当玩家拥有同样的参与概率 $p ⁇ i ⁇ equiv p$时,最坏的情况就实现了。对于折线性成本,我们提供了无政府状态参数价格的分析性表达,作为美元的一个函数。这个函数持续为$(0,1美元),相当于0.3美元的最大参与概率为$<p ⁇ leq 1/Q}1美元,而当美元到1美元时则增加到5/2美元。我们的工作可以被解释为在非原子与原子游戏的无政府状态价格之间持续过渡,而我们只能使用这种固定的游戏。