In the Equal Maximum Flow Problem (EMFP), we aim for a maximum flow where we require the same flow value on all edges in some given subsets of the edge set. In this paper, we study the closely related Almost Equal Maximum Flow Problems (AEMFP) where the flow values on edges of one homologous edge set differ at most by the valuation of a so called deviation function~$\Delta$. We prove that the integer almost equal maximum flow problem (integer AEMFP) is in general $\mathcal{NP}$-complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also $\mathcal{NP}$-complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. We provide inapproximability results for the integral AEMFP. For the integer AEMFP we state a polynomial algorithm for the constant deviation and concave case for a fixed number of homologous sets.
翻译:在“平等最大流动问题”(EMFP)中,我们的目标是一个最大流流,我们需要在边缘组某些特定子组的所有边缘上要求相同的流动值。在本文中,我们研究了密切相关的几乎相等的最大流动问题(AEMFP),一个同质边缘边缘边缘的流量值因所谓的偏移函数的估值而最多不同,为美元=Delta$。我们证明,整数几乎相等的最大流动问题(Integer AEMFP)一般为$\mathcal{NP}$-完整,并表明即使在 convex偏差函数中找到一个分数最大流的问题也是$\mathcal{NP}$-完整的。这与EMFP是相反的,在分数情况下,该值是多角度时间可溶化的。我们为整体的AEMFP提供了不相容的结果。对于整数的 AEMFP,我们为固定的同质组合组合组合组合体的常偏差和共性算法。