The approximate Carath\'eodory theorem states that given a compact convex set $\mathcal{C}\subset\mathbb{R}^n$ and $p\in\left[2,+\infty\right[$, each point $x^*\in\mathcal{C}$ can be approximated to $\epsilon$-accuracy in the $\ell_p$-norm as the convex combination of $\mathcal{O}(pD_p^2/\epsilon^2)$ vertices of $\mathcal{C}$, where $D_p$ is the diameter of $\mathcal{C}$ in the $\ell_p$-norm. A solution satisfying these properties can be built using probabilistic arguments or by applying mirror descent to the dual problem. We revisit the approximate Carath\'eodory problem by solving the primal problem via the Frank-Wolfe algorithm, providing a simplified analysis and leading to an efficient practical method. Furthermore, improved cardinality bounds are derived naturally using existing convergence rates of the Frank-Wolfe algorithm in different scenarios, for example when $x^*$ is in the (relative) interior of $\mathcal{C}$ or when $x^*$ is a sparse convex combination of the vertices. We also propose cardinality bounds when $p\in\left[1,2\right[\cup\{+\infty\}$ via a nonsmooth variant of the algorithm. Lastly, we address the problem of finding sparse approximate projections onto $\mathcal{C}$ in the $\ell_p$-norm, $p\in\left[1,+\infty\right]$.
翻译:大致的 Carath\\\\ odory 理论表示,根据一个压缩的 convex 设置 $\ mathcal{C\\ subset\ mathb{R\\\ n美元和$p\ left[2,\\ int\ right[美元,每个点$x_in\ mathcal{C}$的近似值,在$\ ell_ p$- norm 中,可以大约相当于 $\ mathcal{O} (pD_ lider\ p\ little\\\\\\ epslon2) 美元($\ mathcral_ cal_ c} lax$, 其中美元是$\\ max 美元(max crentral) 的直径直径。 美元(l_ lix) 美元(rentral_\\\ ral_ ral_ ral_ max mologyal_ lax) romax romax romax romax romax romax 问题。我们重新审视的大致问题, 问题的近卡罗化- 问题, 当当前- rolationlationlationlationx 美元( rol) 时, 当我们正正正正解的直系解- 。