Correspondence-based point cloud registration is a cornerstone in geometric computer vision, robotics perception, photogrammetry and remote sensing, which seeks to estimate the best rigid transformation between two point clouds from the correspondences established over 3D keypoints. However, due to limited robustness and accuracy, current 3D keypoint matching techniques are very prone to yield outliers, probably even in very large numbers, making robust estimation for point cloud registration of great importance. Unfortunately, existing robust methods may suffer from high computational cost or insufficient robustness when encountering high (or even extreme) outlier ratios, hardly ideal enough for practical use. In this paper, we present a novel time-efficient RANSAC-type consensus maximization solver, named DANIEL (Double-layered sAmpliNg with consensus maximization based on stratIfied Element-wise compatibiLity), for robust registration. DANIEL is designed with two layers of random sampling, in order to find inlier subsets with the lowest computational cost possible. Specifically, we: (i) apply the rigidity constraint to prune raw outliers in the first layer of one-point sampling, (ii) introduce a series of stratified element-wise compatibility tests to conduct rapid compatibility checking between minimal models so as to realize more efficient consensus maximization in the second layer of two-point sampling, and (iii) probabilistic termination conditions are employed to ensure the timely return of the final inlier set. Based on a variety of experiments over multiple real datasets, we show that DANIEL is robust against over 99% outliers and also significantly faster than existing state-of-the-art robust solvers (e.g. RANSAC, FGR, GORE).


翻译:以通信为基础的点云登记是几何计算机视野、机器人感知、光度测量和遥感的基石,它试图估计3D关键点上建立的对应点所形成的两点云层之间最严格的转化。然而,由于力度和准确性有限,目前的三维关键点匹配技术极易产生断层,即使数量很大,对点云登记具有极大重要性的强估值。不幸的是,当遇到高(甚至极端)超值比率时,现有稳健方法可能会受到高计算成本或强度不足的影响,这几乎不适于实际使用。在本文中,我们展示了一个新的、具有时间效率的RANSAC型共识最大化解决器(Daniel)(Double-cle-leached sampliNg),其共识最大化的基础可能非常强,甚至大,使得点云云层登记具有很强的重要性。丹伊尔设计了两层随机随机取样,以便找到超出我们计算成本的不相近的分层。具体地说,我们:(一)在快速的根基级的精确度实验中,将硬度限制用于直径直径直径的直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直的离的直的直的直的直的直的离直的直的直的直的直的离直的离直的离直的离直的离直径直径直径直的离直的直的直的直的直的直的直的离直的离直的直的离直的离直的直的直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直到直

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员