In this paper, we investigate dynamic resource scheduling (i.e., joint user, subchannel, and power scheduling) for downlink multi-channel non-orthogonal multiple access (MC-NOMA) systems over time-varying fading channels. Specifically, we address the weighted average sum rate maximization problem with quality-of-service (QoS) constraints. In particular, to facilitate fast resource scheduling, we focus on developing a very low-complexity algorithm. To this end, by leveraging Lagrangian duality and the stochastic optimization theory, we first develop an opportunistic MC-NOMA scheduling algorithm whereby the original problem is decomposed into a series of subproblems, one for each time slot. Accordingly, resource scheduling works in an online manner by solving one subproblem per time slot, making it more applicable to practical systems. Then, we further develop a heuristic joint subchannel assignment and power allocation (Joint-SAPA) algorithm with very low computational complexity, called Joint-SAPA-LCC, that solves each subproblem. Finally, through simulation, we show that our Joint-SAPA-LCC algorithm provides good performance comparable to the existing Joint-SAPA algorithms despite requiring much lower computational complexity. We also demonstrate that our opportunistic MC-NOMA scheduling algorithm in which the Joint-SAPA-LCC algorithm is embedded works well while satisfying given QoS requirements.


翻译:在本文中,我们调查在时间变化的淡化渠道中,对多通道非正反方多存取(MC-NOMA)系统进行下行连接的动态资源时间安排(即联合用户、亚通道和动力时间安排),具体地说,我们处理加权平均总和最大化问题,处理服务质量限制(QOS),特别是为了便利快速资源时间安排,我们侧重于开发一种非常低的兼容性算法。为此,我们利用Lagrangian双轨制和随机优化理论,首先开发一种机会性的MC-NOMA列表算法,将最初的问题分解成一系列子问题,每个时档一次。因此,资源时间安排以在线方式发挥作用,解决每个时档一个子问题,使其更适用于实际的系统。随后,我们进一步开发一种计算复杂性非常低的超自然联合子网配置和权力分配算法,称为联合SAPA-LCC算法,解决每个子问题。最后,通过模拟,我们共同的ASAP-AS-AS-A 联合算法也展示了我们目前相当的IMLIMA的模拟,同时展示了我们的共同-ASAP-assemalial dalalal dal dassal dassal dassal dassal dassildaldaldaldaldaldaldaldal 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
39+阅读 · 2020年9月6日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【重磅】100大产业链全景图
全球创新论坛
11+阅读 · 2018年12月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
39+阅读 · 2020年9月6日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【重磅】100大产业链全景图
全球创新论坛
11+阅读 · 2018年12月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员