We propose a novel quantum computing strategy for parallel MCMC algorithms that generate multiple proposals at each step. This strategy makes parallel MCMC amenable to quantum parallelization by using the Gumbel-max trick to turn the generalized accept-reject step into a discrete optimization problem. When combined with new insights from the parallel MCMC literature, such an approach allows us to embed target density evaluations within a well-known extension of Grover's quantum search algorithm. Letting $P$ denote the number of proposals in a single MCMC iteration, the combined strategy reduces the number of target evaluations required from $\mathcal{O}(P)$ to $\mathcal{O}(P^{1/2})$. In the following, we review the rudiments of quantum computing, quantum search and the Gumbel-max trick in order to elucidate their combination for as wide a readership as possible.
翻译:我们为平行的MCMC算法提出了一个新的量子计算战略,在每一个步骤中产生多个建议。这个战略使得平行的MCMC能够通过使用 Gumbel-max 戏法将普遍接受和反向的一步转换成一个离散的优化问题。当结合来自平行的MCMC 文学的新洞见,这样一种方法使我们能够将目标密度评价嵌入著名的 Grover 量子搜索算法的延伸中。在单一的MC 迭代中让 $P 表示建议的数量,这个合并战略将所需的目标评价数量从$\ mathcal{O}(P) 减为$\ mathcal{O}(P ⁇ 1/2) 。 在接下来,我们审查量子计算、量子搜索和 Gumbel-max 戏法的参数,以便为尽可能多的读者阐明它们的组合。