Various reasons cause shoulder fractures to occur, an area with wider and more varied range of movement than other joints in body. Firstly, images in digital imaging and communications in medicine (DICOM) format are generated for shoulder via Xradiation (Xray), magnetic resonance imaging (MRI) or computed tomography (CT) devices to diagnose and treat such fractures. Shoulder bone Xray images were classified and compared via deep learning models based on convolutional neural network (CNN) using transfer learning and ensemble learning in this study to help physicians diagnose and apply required treatment for shoulder fractures. There are a total of 8379, 4211 normal (negative, nonfracture) and 4168 abnormal (positive, fracture) 3 channel shoulder bone Xray images with png format for train data set, and a total of 563, 285 normal and 278 abnormal 3 channel shoulder bone Xray images with png format for validation and test data in classification conducted using all shoulder images in musculoskeletal radiographs (MURA) dataset, one of the largest public radiographic image datasets. CNN based built deep learning models herein are; ResNet, ResNeXt, DenseNet, VGG, Inception and MobileNet. Moreover, a classification was also performed by Spinal fully connected (Spinal FC) adaptations of all models. Transfer learning was applied for all these classification procedures. Two different ensemble learning (EL) models were established based on performance of classification results obtained herein. The highest Cohens Kappa score of 0.6942 and highest classification test accuracy of 84.72% were achieved in EL2 model, and the highest AUC score of 0.8862 in EL1.


翻译:首先,通过Xradization(Xray)、磁共振成像(MRI)或计算透视(CT)设备为肩膀生成了数字成像和医学通信(DICOM)格式的图像,用于诊断和治疗这种骨折。肩骨X光图像经过分类,并通过深学习模型进行了比较,该模型以革命神经网络为基础,使用转移学习和共同学习,帮助医生诊断和对肩骨折进行所需的治疗。共有8379、4211个医学数字成像和通信(DISCOM)格式的图像,用于通过XXXXXXX(X)设备,用于诊断和治疗这种骨折。肩部X光图像被分类为563、285个正常和278个异常X(X),用于校正和测试模型,在Musculostlooseal Alligistration(MURA)中使用所有肩部成像图像,一个最大的DRAD图像应用模型。

0
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员