The assignment of importance scores to particular frames or (short) segments in a video is crucial for summarization, but also a difficult task. Previous work utilizes only one source of visual features. In this paper, we suggest a novel model architecture that combines three feature sets for visual content and motion to predict importance scores. The proposed architecture utilizes an attention mechanism before fusing motion features and features representing the (static) visual content, i.e., derived from an image classification model. Comprehensive experimental evaluations are reported for two well-known datasets, SumMe and TVSum. In this context, we identify methodological issues on how previous work used these benchmark datasets, and present a fair evaluation scheme with appropriate data splits that can be used in future work. When using static and motion features with parallel attention mechanism, we improve state-of-the-art results for SumMe, while being on par with the state of the art for the other dataset.


翻译:在视频中为特定框架或(短)段分配重要评分对于总结至关重要,但也是一项困难的任务。 先前的工作只使用一个视觉特征来源。 在本文中,我们建议建立一个新颖的模型结构,将视觉内容和运动的三个特征组合结合起来,以预测重要评分。 拟议的结构在使用反映(静态)视觉内容的动作特征和特征之前,先使用关注机制,即从图像分类模型中衍生出来。 报告对两个众所周知的数据集( Summe和TVSum)进行全面的实验评价。 在这方面,我们确定了关于以往工作如何使用这些基准数据集的方法问题,并提出了一个公平的评估方案,其中含有适当的数据分割,可用于今后的工作。在使用平行关注机制使用静态和运动特征时,我们改进SumMe的状态和艺术结果,同时与其他数据集的状态保持平衡。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
Transformer替代CNN?8篇论文概述最新进展!
专知会员服务
75+阅读 · 2021年1月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员