In recent years, machine speech-to-speech and speech-to-text translation has gained momentum thanks to advances in artificial intelligence, especially in the domains of speech recognition and machine translation. The quality of such applications is commonly tested with automatic metrics, such as BLEU, primarily with the goal of assessing improvements of releases or in the context of evaluation campaigns. However, little is known about how such systems compare to human performances in similar communicative tasks or how the performance of such systems is perceived by final users. In this paper, we present the results of an experiment aimed at evaluating the quality of a simultaneous speech translation engine by comparing it to the performance of professional interpreters. To do so, we select a framework developed for the assessment of human interpreters and use it to perform a manual evaluation on both human and machine performances. In our sample, we found better performance for the human interpreters in terms of intelligibility, while the machine performs slightly better in terms of informativeness. The limitations of the study and the possible enhancements of the chosen framework are discussed. Despite its intrinsic limitations, the use of this framework represents a first step towards a user-centric and communication-oriented methodology for evaluating simultaneous speech translation.


翻译:近年来,由于人工智能的进步,特别是语音识别和机器翻译领域的进步,机器语音和语音对文本翻译取得了势头。这些应用的质量通常用自动测量仪进行测试,如BLEU,主要目的是评估释放的改进情况,或者在评估运动中这样做。然而,对于这些系统如何与类似通信任务中的人类表现进行比较,或者最终用户如何看待这些系统的绩效,我们所知甚少。本文介绍了一项实验的结果,其目的是通过将同步语音翻译引擎与专业口译员的业绩进行比较,评价同步语音翻译引擎的质量。为了做到这一点,我们选择了为评估人类口译员而开发的一个框架,并使用这一框架对人和机器的性能进行人工评估。在我们的抽样中,我们发现人类口译员在智能化方面表现较好,而机器在信息性方面表现略好。我们讨论了研究的局限性和所选择的框架的可能改进。尽管存在内在局限性,但使用这一框架是朝着同时评价语言翻译的以用户中心和通信为导向的方法迈出的第一步。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员