Gaze estimation methods have significantly matured in recent years, but the large number of eye images required to train deep learning models poses significant privacy risks. In addition, the heterogeneous data distribution across different users can significantly hinder the training process. In this work, we propose the first federated learning approach for gaze estimation to preserve the privacy of gaze data. We further employ pseudo-gradient optimisation to adapt our federated learning approach to the divergent model updates to address the heterogeneous nature of in-the-wild gaze data in collaborative setups. We evaluate our approach on a real-world dataset (MPIIGaze) and show that our work enhances the privacy guarantees of conventional appearance-based gaze estimation methods, handles the convergence issues of gaze estimators, and significantly outperforms vanilla federated learning by 15.8% (from a mean error of 10.63 degrees to 8.95 degrees). As such, our work paves the way to develop privacy-aware collaborative learning setups for gaze estimation while maintaining the model's performance.
翻译:最近几年,Gaze估计方法已相当成熟,但是,培训深层学习模型所需的大量眼睛图像构成了巨大的隐私风险。此外,不同用户的不同数据分布会大大妨碍培训过程。在这项工作中,我们提出了第一种凝视估计联合会式学习方法,以维护凝视数据的隐私。我们进一步采用了假分级优化方法,以调整我们的联盟式学习方法,使之适应不同的模型更新方法,从而解决协作组合中两侧视觉数据的差异性。我们评估了我们关于真实世界数据集(MPIIGaze)的方法,并表明我们的工作加强了传统视觉估计方法的隐私保障,处理了凝视估计器的趋同问题,大大超越了香草凝聚型学习的15.8%(从10.63度到8.95度的平均误差 ) 。 因此,我们的工作铺平了一条道路,在保持模型性能的同时,为视觉评估开发隐私觉察合作学习设置。