We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.


翻译:我们重新审视了在一发式环境下量子状态再分配的任务,并为这项任务设计了一个协议,以与量子马尔科夫链的距离测量通信成本计算。更准确地说,距离的定义是量子最大反动灵敏度和量子假设测试酶。我们的结果是第一个将量子状态再分配和量子马尔科夫链在操作上连接起来,并可以被解释为对量子有条件的相互信息可能的一次性模拟的操作解释。我们协议的通信成本比所有已知的通信成本低,并且无异性地实现了已知的量子有条件的相互信息率。 因此,我们的工作朝着一个重要的开放问题迈出了一步,即一发式量子量子再分配的近最佳定性问题。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
专知会员服务
19+阅读 · 2020年9月6日
还在修改博士论文?这份《博士论文写作技巧》为你指南
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
40+一线大厂AI落地案例指南|年终干货总结
InfoQ
8+阅读 · 2018年11月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2020年9月6日
还在修改博士论文?这份《博士论文写作技巧》为你指南
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
40+一线大厂AI落地案例指南|年终干货总结
InfoQ
8+阅读 · 2018年11月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员