There is much confusion in the literature over Hurst exponent (H). The purpose of this paper is to illustrate the difference between fractional Brownian motion (fBm) on the one hand and Gaussian Markov processes where H is different to 1/2 on the other. The difference lies in the increments, which are stationary and correlated in one case and nonstationary and uncorrelated in the other. The two- and one-point densities of fBm are constructed explicitly. The two-point density does not scale. The one-point density for a semi-infinite time interval is identical to that for a scaling Gaussian Markov process with H different to 1/2 over a finite time interval. We conclude that both Hurst exponents and one-point densities are inadequate for deducing the underlying dynamics from empirical data. We apply these conclusions in the end to make a focused statement about nonlinear diffusion.
翻译:Hurst Exponent (H) 的文献中有许多混淆。 本文的目的是要说明分数布朗运动(fBm)与高森马尔科夫过程(H与1/2不同)之间的差别。 差别在于递增, 在一个案例中是固定的, 在一个案例中是相互关联的, 在另一个案例中是非静止的, 而在另一个案例中是互不关联的。 fBm的两点和一点密度是明确的构建的。 两点密度不缩放。 半无限期时间间隔的一点密度与在一定时间间隔内以H与1/2为不同的比例缩放高森马尔科夫过程的一点密度相同。 我们的结论是, Hurst 推算和一点密度都不足以从实验数据中去除基本动态。 我们最后应用这些结论来对非线性扩散做出重点说明 。