The basic goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. The outcome of a test on a subset of items is positive if the subset has at least $u$ defective items, negative if it has up to $\ell$ defective items, where $0\leq\ell<u$, and arbitrary otherwise. This is called threshold group testing. The parameter $g=u-\ell-1$ is called \textit{the gap}. In this paper, we focus on the case $g>0$, i.e., threshold group testing with a gap. Note that the results presented here are also applicable to the case $g = 0$; however, the results are not as efficient as those in related work. Currently, a few reported studies have investigated test designs and decoding algorithms for identifying defective items. Most of the previous studies have not been feasible because there are numerous constraints on their problem settings or the decoding complexities of their proposed schemes are relatively large. Therefore, it is compulsory to reduce the number of tests as well as the decoding complexity, i.e., the time for identifying the defective items, for achieving practical schemes. The work presented here makes five contributions. The first is a more accurate theorem for a non-adaptive algorithm for threshold group testing proposed by Chen and Fu. The second is an improvement in the construction of disjunct matrices, which are the main tools for tackling (threshold) group testing and other tasks such as constructing cover-free families or learning hidden graphs. The third and fourth contributions are a reduced exact upper bound on the number of tests and a reduced asymptotic bound on the decoding time for identifying defective items in a noisy setting on test outcomes. The fifth contribution is a simulation on the number of tests of the resulting improvements for previous work and the proposed theorems.


翻译:阈值组测试的基本目标是在以美元计价的物品中找出最高达美元有缺陷的物品, 美元通常比美元少得多。 如果子组的物品至少有美元有缺陷, 则测试的结果是肯定的。 如果子组的物品有美元有缺陷, 则结果是否定的, 如果它有美元有缺陷的物品, 美元= leq\ ell < u美元, 或者任意的。 这被称为阈值组测试。 参数 $= u\ ell-1$ 被称为 textitit{ 差距} 。 在本文中, 我们侧重于 $g= 0美元, 也就是说, 门槛组的测试结果是肯定的。 这里所报道的几项研究对测试的测试设计和解析算算方法进行了调查。 先前的研究大多不可行, 因为他们的问题组改进或拟议方案的解码复杂程度存在许多限制 。 因此, 开始的临界值组测试是免费的, 隐藏的组群组的测试结果是默认的。 测试过程的难度是精确性, 完成的组的测试过程是精确性, 。 完成的组的试验的进度是精确性测试, 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年8月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年8月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
6+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员