项目名称: 水轮发电机组振动与局放的监测与诊断
项目编号: No.51279161
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 水利工程
项目作者: 贾嵘
作者单位: 西安理工大学
项目金额: 80万元
中文摘要: 水轮发电机组是水力发电厂的核心装置,包括水轮机和水轮发电机两大部分。大量的实践表明,水轮机的故障80%可以通过振动信号表现出来,而发电机的故障大部分以绝缘局部放电的形式表现出来。本课题以水轮机的振动和发电机的局部放电这两种最主要的故障类型为研究重点,通过对振动和局放状态的监测,弄清故障的机理,研究其信号处理技术与智能诊断方法。 通过收集水电站的振动和局部放电的故障信号数据,对故障信号进行分析处理,获取水轮发电机组的故障样本,建立水轮发电机组的故障特征集。借鉴现代信号处理与人工智能领域的最新研究成果,分别应用Hilbert-Huang变换、基于自回归(AR)的信号特征提取以及最小二乘支持向量机的方法,开展水轮发电机组振动以及局部放电故障的信号分析、抗干扰、故障特征提取和故障诊断方法的研究,提出适合水轮发电机组振动和局放在线诊断的智能诊断方法,开发具有自主知识产权的信号处理与故障智能诊断软件,
中文关键词: 水轮发电机组;信号去噪;特征提取;故障诊断;性能评估
英文摘要: Hydroelectric generating set is the core device of the hydropower station, it consists of two parts, hydraulic turbine and hydro-generator. A lot of practices show that, 80% faults of the hydraulic turbine can be shown in the vibration signal, and the most faults of the hydro-generator can be find expression in the partial discharge (PD) of the insulating materials. This issue takes the two kinds of main faults: the vibration of the hydraulic turbine and the partial discharge of the hydro-generator as the focus topic. By monitoring the state of vibration and PD signal to clarifying the mechanism of the fault, studying the signal processing technology and intelligent diagnosis method. Through collecting and analysis of the fault data of the vibration and PD signal, the fault samples of vibration and PD fault were obtained, then these data were analyzed and processed to set up the fault feature sets of hydroelectric generating set. By reference from latest research achievements of modern signal processing and artificial intelligence field, and by using the Hilbert-Huang transform, extracting the fault features based on the auto regressive model and taking the least squares support vector machines, and so on, the vibration and PD signal processing, de-noising, fault features extracting and fault diagnosis methods
英文关键词: Hydropower generating unit;Signal denoising;Feature extraction;Fault diagnosis;Performance evaluation