An intervention may have an effect on units other than those to which it was administered. This phenomenon is called interference and it usually goes unmodeled. In this paper, we propose to combine Lauritzen-Wermuth-Frydenberg and Andersson-Madigan-Perlman chain graphs to create a new class of causal models that can represent both interference and non-interference relationships. Specifically, we define the new class of models, introduce global and local and pairwise Markov properties for them, and prove their equivalence. We also propose an algorithm for maximum likelihood parameter estimation for the new models, and report experimental results. Finally, we adapt Pearl's do-calculus for causal effect identification in the new models.
翻译:干预可能对其管理的单位之外的其他单位产生影响。 这种现象被称为干扰, 通常不进行改造。 在本文中, 我们提议将劳里琴- 韦尔穆斯- 弗莱登贝格和安德森- 马迪冈- 珀尔曼链条图结合起来, 以创建能够代表干扰和互不干涉关系的新型因果模型。 具体地说, 我们定义了新型模型, 为他们引入了全球、 本地和对称的马尔科夫属性, 并证明了其等同性。 我们还提出了新模型最大可能性参数估算的算法, 并报告了实验结果。 最后, 我们调整了珍珠的因果计算方法, 以在新模型中识别因果关系 。