We consider the semantic rate-distortion problem motivated by task-oriented video compression. The semantic information corresponding to the task, which is not observable to the encoder, shows impacts on the observations through a joint probability distribution. The similarities among intra-frame segments and inter-frames in video compression are formulated as side information available at both the encoder and the decoder. The decoder is interested in recovering the observation and making an inference of the semantic information under certain distortion constraints. We establish the information-theoretic limits for the tradeoff between compression rates and distortions by fully characterizing the rate-distortion function. We further evaluate the rate-distortion function under specific Markov conditions for three scenarios: i) both the task and the observation are binary sources; ii) the task is a binary classification of an integer observation as even and odd; iii) Gaussian correlated task and observation. We also illustrate through numerical results that recovering only the semantic information can reduce the coding rate comparing to recovering the source observation.
翻译:我们考虑了由任务导向的视频压缩引起的语义率扭曲问题。 与任务相对应的语义信息( 无法从编码器中观测到)通过共同概率分布对观测产生影响。 视频压缩中框架内部部分和框架之间的相似性是作为在编码器和解码器中可获得的侧边信息而形成的。 解码器有意在某些扭曲限制下恢复观察和推断语义信息。 我们为压缩率和扭曲之间的权衡设定了信息理论限制,通过充分描述调制率功能的特性。 我们进一步评估了马可夫特定条件下三种情景的率扭曲功能:(一) 任务和观察是二元来源;(二) 任务是一个对整数观察的二进制分类; (三) 高斯的关联任务和观察。 我们还通过数字结果说明,只有恢复语义信息才能降低与恢复源观测的编码速度。