We study a class of discrete models in which a collection of particles evolves in time following the gradient flow of an energy depending on the cell areas of an associated Laguerre (i.e. a weighted Voronoi) tessellation. We consider the high number of cell limit of such systems and, using a modulated energy argument, we prove convergence towards smooth solutions of nonlinear diffusion PDEs of porous medium type.
翻译:我们研究了一类离散模型,在该模型中,一堆微粒随着与相应拉盖尔(即加权沃罗诺伊)细胞面积相关的能量的梯度流在时间上演化。我们考虑这些系统中的高数量细胞极限,利用调整的能量论证,证明了收敛于非线性扩散PDEs的平滑解,即介质的类型。