Digitisation of fruit trees using LiDAR enables analysis which can be used to better growing practices to improve yield. Sophisticated analysis requires geometric and semantic understanding of the data, including the ability to discern individual trees as well as identifying leafy and structural matter. Extraction of this information should be rapid, as should data capture, so that entire orchards can be processed, but existing methods for classification and segmentation rely on high-quality data or additional data sources like cameras. We present a method for analysis of LiDAR data specifically for individual tree location, segmentation and matter classification, which can operate on low-quality data captured by handheld or mobile LiDAR. Our methods for tree location and segmentation improved on existing methods with an F1 score of 0.774 and a v-measure of 0.915 respectively, while trunk matter classification performed poorly in absolute terms with an average F1 score of 0.490 on real data, though consistently outperformed existing methods and displayed a significantly shorter runtime.
翻译:利用LiDAR对果树进行数字化分析,可以用来更好地增加产量,通过这种分析提高产量。具体分析要求对数据进行几何和语义理解,包括能够辨别个别树木以及辨别叶片和结构物质。这种资料的提取应该像数据捕获那样迅速,以便整个果园能够处理,但现有的分类和分解方法依靠高质量的数据或摄影机等其他数据源。我们提出了一种分析LiDAR数据的方法,具体针对单个树的位置、分解和物质分类,这些数据可以使用手持或移动LiDAR收集的低质量数据。我们用F1分0.774分和V-量度为0.915分的现有方法改进了树的位置和分解方法,而用绝对值计算,大宗物质分类的绝对值差,实际数据平均F1分为0.490分,尽管一直超过现有方法,并显示运行时间短得多。