There is a conjecture on $\mathcal{NP}\overset{?}{=}\mathcal{PSPACE}$ in computational complexity. It is a widespread belief that $\mathcal{NP}\neq \mathcal{PSPACE}$. In this paper, we show that $\mathcal{NP}\neq \mathcal{PSPACE}$ via the premise of $NTIME[S(n)]\subseteq DSPACE[S(n)]$, and then by diagonalization over all polynomial-time nondeterministic Turing machines via universal nondeterministic Turing machine $M_0$ running in $O(n^k)$ space for any $k\in \mathbb{N}_1$. Thus we obtain a language $L_d$ not accepted by any polynomial-time nondeterministic Turing machines, but accepted by $M_0$. We further prove that $L_d\in \mathcal{PSPACE}$ hence the result $\mathcal{NP}\neq \mathcal{PSPACE}$ follows.
翻译:在计算复杂度方面有一个关于$mathcal{NP{NP_overset{?\\\\ mathcal{pscal{PSPCE}$的猜想。 人们普遍认为,$mathcal{NP{neq\mathcal{PSPACE}$。 在本文中, 我们显示,$mathcal{NP ⁇ nq \ mathcal{pscal{PSPACE}$, 前提是$NTIME[S(n)]\Subseteq DSPACE[S(n)]$, 然后通过通用的非非定义性涡轮机对所有多边- 时间非定型涡轮机进行二进化。 我们进一步证明, $L_d\ mathcal{PSACE} 美元, 美元运行于此结果。 因此,我们得到了任何非定时非定型涡轮机所不接受的1美元。 我们进一步证明, $L_d\ mathal{PAC_Q} 美元。