In this paper, an LSTM-aided hybrid random access scheme (LSTMH-RA) is proposed to support diverse quality of service (QoS) requirements in 6G machine-type communication (MTC) networks, where massive MTC (mMTC) devices and ultra-reliable low latency communications (URLLC) devices coexist. In the proposed LSTMH-RA scheme, mMTC devices access the network via a timing advance (TA)-aided four-step procedure to meet massive access requirement, while the access procedure of the URLLC devices is completed in two steps coupled with the mMTC devices' access procedure to reduce latency. Furthermore, we propose an attention-based LSTM prediction model to predict the number of active URLLC devices, thereby determining the parameters of the multi-user detection algorithm to guarantee the latency and reliability access requirements of URLLC devices. We analyze the successful access probability of the LSTMH-RA scheme. Numerical results show that, compared with the benchmark schemes, the proposed LSTMH-RA scheme can significantly improve the successful access probability, and thus satisfy the diverse QoS requirements of URLLC and mMTC devices.


翻译:在本文件中,提议采用LSTMTM辅助的混合随机访问计划(LSTMH-RA),以支持6G机器型通信网络(MTC)中的大型MTC(MMTC)装置和超可靠低潜伏通信(URLLLC)装置共存的6G机器型通信网络的服务质量要求多样化;在拟议的LSTMH-RA计划中,MMTC装置通过一个时间先期(TA)辅助的四步程序进入网络,以满足大规模访问要求,而URLLC装置的准入程序则分两个步骤完成,再加上MMTC装置的准入程序,以减少延迟性;此外,我们提议采用一个基于注意的LSTMMT预测模型,预测活跃的URLC装置的数目,从而确定多用户检测算法参数,以保证URLC装置的延迟性和可靠性准入要求;我们分析LSTMH-RA装置的成功访问概率。

0
下载
关闭预览

相关内容

【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
64+阅读 · 2021年4月23日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
已删除
将门创投
5+阅读 · 2018年7月25日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
AI-Native Network Slicing for 6G Networks
Arxiv
0+阅读 · 2021年11月5日
VIP会员
相关VIP内容
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
64+阅读 · 2021年4月23日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
已删除
将门创投
5+阅读 · 2018年7月25日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员