This paper focuses on developing energy-efficient online data processing strategy of wireless powered MEC systems under stochastic fading channels. In particular, we consider a hybrid access point (HAP) transmitting RF energy to and processing the sensing data offloaded from multiple WDs. Under an average power constraint of the HAP, we aim to maximize the long-term average data sensing rate of the WDs while maintaining task data queue stability. We formulate the problem as a multi-stage stochastic optimization to control the energy transfer and task data processing in sequential time slots. Without the knowledge of future channel fading, it is very challenging to determine the sequential control actions that are tightly coupled by the battery and data buffer dynamics. To solve the problem, we propose an online algorithm named LEESE that applies the perturbed Lyapunov optimization technique to decompose the multi-stage stochastic problem into per-slot deterministic optimization problems. We show that each per-slot problem can be equivalently transformed into a convex optimization problem. To facilitate online implementation in large-scale MEC systems, instead of solving the per-slot problem with off-the-shelf convex algorithms, we propose a block coordinate descent (BCD)-based method that produces close-to-optimal solution in less than 0.04\% of the computation delay. Simulation results demonstrate that the proposed LEESE algorithm can provide 21.9\% higher data sensing rate than the representative benchmark methods considered, while incurring sub-millisecond computation delay suitable for real-time control under fading channel.
翻译:本文侧重于开发无线动力MEC系统的能源高效在线数据处理战略。 特别是, 我们考虑一个混合接入点( HAP) 将RF能源传输给多个残疾人并处理从他们身上卸载的遥感数据。 在HAP的平均功率限制下, 我们的目标是最大限度地提高WD的长期平均数据遥感率, 同时保持任务数据队列稳定性 。 我们将问题发展成一个多阶段的随机优化, 以控制能源传输和连续时间槽中的任务数据处理。 在不了解未来频道的老化的情况下, 确定由电池和数据缓冲动态紧密结合的顺序控制行动是非常困难的。 为了解决问题, 我们提议了一个名为LEEESE的在线算法, 将周遭的LEEEE 优化技术用于将多阶段性沙眼问题分解成每颗粒的确定性优化问题 。 我们指出, 每一个每笔的平价问题都可以被类似地转化成一个直流缩时间段优化问题 。 为了在大规模 MEC 系统上实施由电池和数据缓冲的连续操作系统,, 而不是在演示中以平时平时段计算方法,, 演示一个模拟的平流流流数据解决方案 。