We investigate a cooperative federated learning framework among devices for mobile edge computing, named CFLMEC, where devices co-exist in a shared spectrum with interference. Keeping in view the time-average network throughput of cooperative federated learning framework and spectrum scarcity, we focus on maximize the admission data to the edge server or the near devices, which fills the gap of communication resource allocation for devices with federated learning. In CFLMEC, devices can transmit local models to the corresponding devices or the edge server in a relay race manner, and we use a decomposition approach to solve the resource optimization problem by considering maximum data rate on sub-channel, channel reuse and wireless resource allocation in which establishes a primal-dual learning framework and batch gradient decent to learn the dynamic network with outdated information and predict the sub-channel condition. With aim at maximizing throughput of devices, we propose communication resource allocation algorithms with and without sufficient sub-channels for strong reliance on edge servers (SRs) in cellular link, and interference aware communication resource allocation algorithm for less reliance on edge servers (LRs) in D2D link. Extensive simulation results demonstrate the CFLMEC can achieve the highest throughput of local devices comparing with existing works, meanwhile limiting the number of the sub-channels.
翻译:我们调查了移动边缘计算设备(名为CFLMEC)之间的合作联合学习框架,在移动边缘计算设备(名为CFLMEC)中,设备在共享频谱中共同存在; 保持合作联合学习框架和频谱稀缺的时间平均网络输送量,我们侧重于最大限度地向边缘服务器或近端设备提供接收数据,以填补在使用联盟学习设备时通信资源分配方面的差距; 在CFLMEC中,设备可以以中继竞赛的方式向相应的设备或边缘服务器传输本地模型,并且我们采用分解方法解决资源优化问题,方法是考虑分流、频道再利用和无线资源分配方面的最大数据率,建立原始双向学习框架和分流梯度,以便学习带有过时信息的动态网络并预测子通道条件; 为了最大限度地增加设备吞吐量,我们建议使用通信资源分配算法,同时没有足够分道通道在移动电话连接中大力依赖边端服务器(SRs),我们使用分流方法解决资源优化问题,我们采用分解法,通过考虑分流、频道再利用和无线资源分配的最大速率,从而建立原始学习框架框架框架框架框架框架框架框架框架,以体面地学习动态网络学习动态网络,预测分流条件条件条件; 我们建议通信资源分配算,通过限制现有CLMLMLISCMLMLMLML),通过限制现有工厂的最高模拟工作,可以实现现有数字。