Through the use of examples, we explain one way in which applied topology has evolved since the birth of persistent homology in the early 2000s. The first applications of topology to data emphasized the global shape of a dataset, such as the three-circle model for $3 \times 3$ pixel patches from natural images, or the configuration space of the cyclo-octane molecule, which is a sphere with a Klein bottle attached via two circles of singularity. In these studies of global shape, short persistent homology bars are disregarded as sampling noise. More recently, however, persistent homology has been used to address questions about the local geometry of data. For instance, how can local geometry be vectorized for use in machine learning problems? Persistent homology and its vectorization methods, including persistence landscapes and persistence images, provide popular techniques for incorporating both local geometry and global topology into machine learning. Our meta-hypothesis is that the short bars are as important as the long bars for many machine learning tasks. In defense of this claim, we survey applications of persistent homology to shape recognition, agent-based modeling, materials science, archaeology, and biology. Additionally, we survey work connecting persistent homology to geometric features of spaces, including curvature and fractal dimension, and various methods that have been used to incorporate persistent homology into machine learning.


翻译:通过举例,我们解释了自2000年代早期持久性同族主义诞生以来应用地貌学演变的一种方法。数据学的最初应用强调数据集的全球形状,例如自然图像3美元3元的三环模型像素补,或环球-奥氏分子的配置空间,这是一个通过两个奇点圈附着的克莱因瓶子的球体。在全球形状的这些研究中,短长的持久性同系物条被忽略为抽样噪音。然而,最近,持续性同系物学被用来解决有关数据当地几何学的问题。例如,如何将本地几何学用于机器学习问题?持久性同系物学及其矢量化方法,包括持久性地貌和持久性图像,为将本地几何和全球性的表面学纳入机器学习提供了流行技术。我们的元理学理论是,短线与许多机器学习任务的长线一样重要。为了维护这一主张,我们调查了持续性同系学的应用,将识别、代理人基质学和持续性研究纳入持续性生物学、持续性生物学研究、持续性生物学、历史、历史学学、历史学、历史学、历史学、历史学、历史学、历史学、历史学、历史学学、历史学学学学学、历史学学学、历史学、历史学、历史学学学学学等。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
116+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
1+阅读 · 2021年6月11日
Arxiv
11+阅读 · 2021年3月25日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
116+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员