Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and also for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community.
翻译:在物理海洋学领域,除了许多现代科学领域普遍存在的大量复杂数据外,海洋研究还提出了多种独特的挑战,而海洋物理海洋学领域也有这些独特的挑战。现有观测数据基本上在空间上稀少,限于表面,时间序列很少,时间跨度超过几十年。重要的时标从几秒到千年,有强大的规模互动和数字模拟努力,因海岸线等细节而复杂。本审查涵盖目前科学洞察力,通过应用多边图书馆和有迫切潜力的地点提供。我们涵盖该领域的主要三个分支:观察、理论和数字建模。我们既强调挑战和机会,也讨论历史背景和突出的ML工具。我们侧重于利用多边图书馆现场取样和卫星观测,以及多边图书馆应用能在多大程度上推进理论海洋学探索,以及协助进行数字模拟。应用中包括了当前海洋学领域的潜在风险。应用中包括了这一研究的偏差和潜在风险。