Machine learning algorithms typically perform optimization over a class of non-convex functions. In this work, we provide bounds on the fundamental hardness of identifying the global minimizer of a non convex function. Specifically, we design a family of parametrized non-convex functions and employ statistical lower bounds for parameter estimation. We show that the parameter estimation problem is equivalent to the problem of function identification in the given family. We then claim that non convex optimization is at least as hard as function identification. Jointly, we prove that any first order method can take exponential time to converge to a global minimizer.


翻译:机器学习算法通常对非 convex 函数类别进行优化。 在此工作中, 我们给出了基本硬度的界限, 以辨别非 convex 函数的全球最小化器。 具体地说, 我们设计了一个配光化非 convex 函数的组合, 并使用统计上较低的下限来估计参数。 我们显示参数估计问题相当于给定家族的函数识别问题 。 然后我们声称非 convex 优化至少和函数识别一样困难 。 共同地, 我们证明任何第一个排序方法都可能需要指数化时间才能与一个全球最小化器汇合 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年4月1日
Optimal Rates for Learning Hidden Tree Structures
Arxiv
0+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月31日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
5+阅读 · 2018年3月28日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员