Along with the success of deep neural network (DNN) models, rise the threats to the integrity of these models. A recent threat is the Trojan attack where an attacker interferes with the training pipeline by inserting triggers into some of the training samples and trains the model to act maliciously only for samples that contain the trigger. Since the knowledge of triggers is privy to the attacker, detection of Trojan networks is challenging. Existing Trojan detectors make strong assumptions about the types of triggers and attacks. We propose a detector that is based on the analysis of the intrinsic DNN properties; that are affected due to the Trojaning process. For a comprehensive analysis, we develop Odysseus, the most diverse dataset to date with over 3,000 clean and Trojan models. Odysseus covers a large spectrum of attacks; generated by leveraging the versatility in trigger designs and source to target class mappings. Our analysis results show that Trojan attacks affect the classifier margin and shape of decision boundary around the manifold of clean data. Exploiting these two factors, we propose an efficient Trojan detector that operates without any knowledge of the attack and significantly outperforms existing methods. Through a comprehensive set of experiments we demonstrate the efficacy of the detector on cross model architectures, unseen Triggers and regularized models.


翻译:随着深心神经网络(DNN)模型的成功,这些模型的完整性将受到威胁。最近的一个威胁是Trojan攻击,攻击者通过将触发器插入一些培训样本并训练模型只对含有触发器的样本采取恶意行动,从而干扰培训管道。由于对触发器的了解对攻击者十分了解,探测Trojan网络具有挑战性。现有的Trojan探测器对触发器和攻击类型作出强烈的假设。我们根据对DNN内在特性的分析提出一个探测器;由于Trojaning进程而受到影响。为了进行全面分析,我们开发Odyssenus,这是迄今为止最多样化的数据集于3 000多个清洁和Trojan模型中的最有恶意的模型。Odyseus涵盖大量攻击;由于利用触发器设计和源的多功能来进行目标班级绘图,因此具有挑战性。我们的分析结果表明,Trojan攻击影响到分类器的距离和清洁数据方块周围决定边界的形状。我们提出了这两个因素,为了全面分析,我们建议建立一个高效的Troyan探测器模型,该模型在不掌握任何对攻击的常规测试方法进行,并且大大地展示了我们所测得的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
35+阅读 · 2020年12月28日
专知会员服务
16+阅读 · 2020年7月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
VIP会员
相关VIP内容
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员