Probabilistic Circuits (PCs) are a promising avenue for probabilistic modeling. They combine advantages of probabilistic graphical models (PGMs) with those of neural networks (NNs). Crucially, however, they are tractable probabilistic models, supporting efficient and exact computation of many probabilistic inference queries, such as marginals and MAP. Further, since PCs are structured computation graphs, they can take advantage of deep-learning-style parameter updates, which greatly improves their scalability. However, this innovation also makes PCs prone to overfitting, which has been observed in many standard benchmarks. Despite the existence of abundant regularization techniques for both PGMs and NNs, they are not effective enough when applied to PCs. Instead, we re-think regularization for PCs and propose two intuitive techniques, data softening and entropy regularization, that both take advantage of PCs' tractability and still have an efficient implementation as a computation graph. Specifically, data softening provides a principled way to add uncertainty in datasets in closed form, which implicitly regularizes PC parameters. To learn parameters from a softened dataset, PCs only need linear time by virtue of their tractability. In entropy regularization, the exact entropy of the distribution encoded by a PC can be regularized directly, which is again infeasible for most other density estimation models. We show that both methods consistently improve the generalization performance of a wide variety of PCs. Moreover, when paired with a simple PC structure, we achieved state-of-the-art results on 10 out of 20 standard discrete density estimation benchmarks.


翻译:概率巡回(PCs)是概率建模的一个很有希望的渠道。 它们把概率图形模型(PGMs)和神经网络(NNs)的优势结合起来。 然而,它们显然是可移动的概率模型,支持高效和精确地计算许多概率推断查询,如边际和MAP。 此外,由于PCs是结构化的计算图表,它们可以利用深层次学习式的参数更新,大大改善了它们的可缩放性。然而,这种创新还使得PCs容易被过度配置,这在许多标准基准中都观察到。尽管PGMs和NNS都存在丰富的正规化技术,但它们在应用到PCs时却不够有效。相反,我们重新思考PCs的正规化,并提出两种直线性技术,即数据软软化和整流化的规范,在计算图表中,数据的精确化提供了一种有原则性的方式,在封闭的数据集的形式上增加不确定性,在最隐含的定期的固定性标准化的浓度参数中,通过软性的PCrentral 的公式来学习一个软的常规分配。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2019年6月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员