Automatic augmentation methods have recently become a crucial pillar for strong model performance in vision tasks. While existing automatic augmentation methods need to trade off simplicity, cost and performance, we present a most simple baseline, TrivialAugment, that outperforms previous methods for almost free. TrivialAugment is parameter-free and only applies a single augmentation to each image. Thus, TrivialAugment's effectiveness is very unexpected to us and we performed very thorough experiments to study its performance. First, we compare TrivialAugment to previous state-of-the-art methods in a variety of image classification scenarios. Then, we perform multiple ablation studies with different augmentation spaces, augmentation methods and setups to understand the crucial requirements for its performance. Additionally, we provide a simple interface to facilitate the widespread adoption of automatic augmentation methods, as well as our full code base for reproducibility. Since our work reveals a stagnation in many parts of automatic augmentation research, we end with a short proposal of best practices for sustained future progress in automatic augmentation methods.
翻译:自动增强方法最近已成为愿景任务中强劲模型性能的关键支柱。 虽然现有的自动增强方法需要权衡简单、成本和性能,但我们展示了一个最简单的基线,即三维增强法,它比以往几乎免费的方法要好。三维增强法没有参数,只对每个图像应用一个单一增强法。因此,三维增强法的效力对我们来说非常出乎意料,我们进行了非常彻底的实验以研究其性能。首先,我们将三维增强法与以往在各种图像分类情景中最先进的方法进行比较。然后,我们用不同的增强空间、增强法和设置进行多重调整研究,以了解其性能的关键要求。此外,我们提供了一个简单的界面,以便于广泛采用自动增强法,以及我们用于再生的完整代码基础。由于我们的工作揭示了自动增强研究的许多部分停滞不前,我们最后提出一个简短的最佳做法建议,以在自动增强方法上持续前进。