The Internet of Things (IoT) has altered living by controlling devices/things over the Internet. IoT has specified many smart solutions for daily problems, transforming cyber-physical systems (CPS) and other classical fields into smart regions. Most of the edge devices that make up the Internet of Things have very minimal processing power. To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks. In addition, as more and more IoT devices are added, the potential for new and unknown threats grows exponentially. For this reason, an intelligent security framework for IoT networks must be developed that can identify such threats. In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset. The system-generated labelled dataset is used to train a deep learning model to detect IoT network attacks. Additionally, the research presents a feature selection mechanism for identifying the most relevant aspects in the dataset for detecting attacks. The study shows that the suggested model is able to identify the unlabelled IoT network datasets and DBN (Deep Belief Network) outperform the other models with a detection accuracy of 97.5% and a false alarm rate of 2.3% when trained using labelled dataset supplied by the proposed approach.


翻译:通过互联网控制装置/东西改变了事物的互联网(IoT) 。 IoT 已经为日常问题指定了许多智能解决方案,将网络物理系统(CPS)和其他古典领域转化为智能区域。 构成事物互联网的大多数边缘设备拥有极小的处理能力。 要降低 IoT 网络, 攻击者可以利用这些设备进行各种网络攻击。 此外, 随着越来越多的IoT 设备的增加, 新的和未知的威胁的可能性会成倍增长。 为此, 必须为IoT 网络开发一个智能安全框架, 从而能够识别此类威胁。 在本文件中, 我们开发了一个不受监督的混合学习模型, 能够从一个未贴标签的数据集中检测IoT 网络中的新或未知袭击。 系统生成的标签数据集被用来训练一个深层学习模型, 以检测 IoT 网络攻击。 此外, 研究还提出了一个用于确定攻击数据集中最相关方面的内容选择机制。 研究表明, 所推荐的模型能够识别未经标签的 IoBerved Ils 网络的准确度, 和经过培训的 Dread ASmax AS ASet laveal ebild droup droup dal 数据元模 975 。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
59+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
21+阅读 · 2022年2月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员