A complexity-adaptive tree search algorithm is proposed for $\boldsymbol{G}_N$-coset codes that implements maximum-likelihood (ML) decoding by using a successive decoding schedule. The average complexity is close to that of the successive cancellation (SC) decoding for practical error rates when applied to polar codes and short Reed-Muller (RM) codes, e.g., block lengths up to $N=128$. By modifying the algorithm to limit the worst-case complexity, one obtains a near-ML decoder for longer RM codes and their subcodes. Unlike other bit-flip decoders, no outer code is needed to terminate decoding. The algorithm can thus be applied to modified $\boldsymbol{G}_N$-coset code constructions with dynamic frozen bits. One advantage over sequential decoders is that there is no need to optimize a separate parameter.
翻译:用于 $\ boldsymbol{G ⁇ N$-cose 代码的复杂调整树搜索算法,该算法通过连续解码时间表执行最大相似值解码。 平均复杂程度接近于对极代码和短Reed- Muller( RM)代码应用时对实际错误率的连续取消( SC) 代码, 例如, 区块长度最高为$N=128美元。 通过修改算法以限制最坏的复杂程度, 一个人获得接近ML的解码器, 用于更长的 RM 代码及其子代码 。 与其他位滑动解码不同, 终止解码不需要外部代码。 因此, 该算法可以应用到修改 $\ boldsymbol{ G ⁇ N$- coet 代码, 与动态冷冻位相比有一个优势。 连续解码器的优点是, 不需要优化单独的参数 。