The 6G vision is envisaged to enable agile network expansion and rapid deployment of new on-demand microservices (i.e., visibility services for data traffic management, mobile edge computing services) closer to the network's edge IoT devices. However, providing one of the critical features of network visibility services, i.e., data flow prediction in the network, is challenging at the edge devices within a dynamic cloud-native environment as the traffic flow characteristics are random and sporadic. To provide the AI-native services for the 6G vision, we propose a novel edge-native framework to provide an intelligent prognosis technique for data traffic management in this paper. The prognosis model uses long short-term memory (LSTM)-based encoder-decoder deep learning, which we train on real time-series multivariate data records collected from the edge $\mu$-boxes of a selected testbed network. Our result accurately predicts the statistical characteristics of data traffic and verify against the ground truth observations. Moreover, we validate our novel framework model with two performance metrics for each feature of the multivariate data.


翻译:设想6G愿景是为了在网络边缘IoT设备更靠近网络边缘的微服务(即数据流量管理的可见度服务、移动边缘计算服务)时,能够灵活地扩大网络,并迅速部署新的随需微服务(即数据流量管理的可见度服务、移动边缘计算服务),然而,提供网络可见度服务的关键特征之一,即网络中的数据流预测,在动态云端环境中对边缘设备具有挑战性,因为交通流量特征是随机零星的。为了为6G愿景提供AI型服务,我们提出了一个新的边际框架,为本文的数据流量管理提供智能预测技术。预测模型使用基于短期内存的编码交换器深度学习,我们用实时时间序列的多变量数据记录培训从选定的试样网络边缘收集的美元/穆尔元框。我们的结果准确地预测了数据流量的统计特征,并根据地面实况观测进行核查。此外,我们用两个基于多变量数据每个特征的性能指标验证我们的新框架模型。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【经典书】模式识别导论,561页pdf
专知会员服务
83+阅读 · 2021年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
35+阅读 · 2021年1月27日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
35+阅读 · 2019年11月7日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员