We can make it easier for disabled users to control assistive robots by mapping the user's low-dimensional joystick inputs to high-dimensional, complex actions. Prior works learn these mappings from human demonstrations: a non-disabled human either teleoperates or kinesthetically guides the robot arm through a variety of motions, and the robot learns to reproduce the demonstrated behaviors. But this framework is often impractical - disabled users will not always have access to external demonstrations! Here we instead learn diverse teleoperation mappings without either human demonstrations or pre-defined tasks. Under our unsupervised approach the robot first optimizes for object state entropy: i.e., the robot autonomously learns to push, pull, open, close, or otherwise change the state of nearby objects. We then embed these diverse, object-oriented behaviors into a latent space for real-time control: now pressing the joystick causes the robot to perform dexterous motions like pushing or opening. We experimentally show that - with a best-case human operator - our unsupervised approach actually outperforms the teleoperation mappings learned from human demonstrations, particularly if those demonstrations are noisy or imperfect. But our user study results were less clear-cut: although our approach enabled participants to complete tasks more quickly and with fewer changes of direction, users were confused when the unsupervised robot learned unexpected behaviors. See videos of the user study here: https://youtu.be/BkqHQjsUKDg
翻译:我们可以让残疾用户更容易地控制辅助机器人。 我们可以让残疾用户更容易地控制辅助机器人, 方法是绘制用户的低维运动杆输入到高维、 复杂的行动中。 先前的作品从人类演示中学习这些绘图: 一个非残疾人类的远程操作或感官操作, 通过各种动作引导机器人手臂。 而机器人则学会复制所显示的行为。 但是这个框架通常不切实际 — 残疾用户并不总是有机会使用外部演示! 我们在这里学习多种远程操作绘图, 没有人类演示或预设任务。 在我们的未受监督的操作方法下, 机器人首先优化物体状态的同步 : 即机器人自主地学习如何推动、拉动、 打开、 关闭或以其他方式改变附近物体的状态 。 我们随后将这些多样化的、 面向对象的行为嵌入一个潜在的空间, 以便实时控制 : 现在按下游戏杆让机器人进行推动或打开等极具魅力的动作 。 我们实验性地显示, 我们的未超强的机器人方法实际上超越了从人类演示中学会的远程操作图象学, Q 。 但是, 当这些演示的用户学习得更不完善的时候, 我们的用户的模范则会更不完善的动作更精确地研究 。