Sentiment analysis or opinion mining aims to determine attitudes, judgments and opinions of customers for a product or a service. This is a great system to help manufacturers or servicers know the satisfaction level of customers about their products or services. From that, they can have appropriate adjustments. We use a popular machine learning method, being Support Vector Machine, combine with the library in Waikato Environment for Knowledge Analysis (WEKA) to build Java web program which analyzes the sentiment of English comments belongs one in four types of woman products. That are dresses, handbags, shoes and rings. We have developed and test our system with a training set having 300 comments and a test set having 400 comments. The experimental results of the system about precision, recall and F measures for positive comments are 89.3%, 95.0% and 92,.1%; for negative comments are 97.1%, 78.5% and 86.8%; and for neutral comments are 76.7%, 86.2% and 81.2%.


翻译:感官分析或意见挖掘旨在确定某种产品或服务客户的态度、判断和意见。 这是一个帮助制造商或服务商了解客户对其产品或服务的满意度的伟大系统。 从这个系统,他们可以进行适当的调整。 我们使用一种流行的机器学习方法,即支持矢量机,与Waikato环境知识分析图书馆(WEKA)合作,建立爪哇网络程序,该程序分析英语评论的情绪属于四种女性产品中的一种,即服装、手袋、鞋和环。我们开发和测试了我们的系统,培训了300条评论,测试了400条评论。系统关于精确度、回顾和F措施的实验结果为89.3%、95.0%和92.1%;负面评论为97.1%、78.5%和86.8%;中性评论为76.7%、86.2%和81.2%。

1
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员