Federated learning (FL) enables the building of robust and generalizable AI models by leveraging diverse datasets from multiple collaborators without centralizing the data. We created NVIDIA FLARE as an open-source software development kit (SDK) to make it easier for data scientists to use FL in their research and real-world applications. The SDK includes solutions for state-of-the-art FL algorithms and federated machine learning approaches, which facilitate building workflows for distributed learning across enterprises and enable platform developers to create a secure, privacy-preserving offering for multiparty collaboration utilizing homomorphic encryption or differential privacy. The SDK is a lightweight, flexible, and scalable Python package, and allows researchers to bring their data science workflows implemented in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) and apply them in real-world FL settings. This paper introduces the key design principles of FLARE and illustrates some use cases (e.g., COVID analysis) with customizable FL workflows that implement different privacy-preserving algorithms. Code is available at https://github.com/NVIDIA/NVFlare.
翻译:联邦学习(FL)通过在不集中数据的情况下利用多个合作者提供的各种数据集,得以建立强有力和普遍适用的AI模型。我们创建了NVIDIA FLARE,作为开放源码软件开发工具包(SDK),使数据科学家更容易在其研究和现实世界应用中使用FL软件。SDK包括了最新FL算法和联动机学习方法的解决办法,这些办法便利了建立跨企业分布式学习的工作流程,并使平台开发者能够利用同质加密或差异性隐私权为多党合作创造安全、隐私保留的提议。SDK是一个轻便、灵活和可缩放的Python软件包,使研究人员能够将其数据科学工作流程引入任何培训图书馆(PyTorrch、TensorFlow、XGBoost,甚至NumPy),并将其应用于现实世界FLLL环境。本文介绍了FARE的关键设计原则,并展示了一些使用案例(例如COVID分析)。SDK是一个轻巧、灵活和可缩缩略图/NVIVA的定制F/DOLs。