Codd's rule of entity integrity stipulates that every table has a primary key. Hence, the attributes of the primary key carry unique and complete value combinations. In practice, data cannot always meet such requirements. Previous work proposed the superior notion of key sets for controlling entity integrity. We establish a linear-time algorithm for validating whether a given key set holds on a given data set, and demonstrate its efficiency on real-world data. We establish a binary axiomatization for the associated implication problem, and prove its coNP-completeness. However, the implication of unary by arbitrary key sets has better properties. The fragment enjoys a unary axiomatization and is decidable in quadratic time. Hence, we can minimize overheads before validating key sets. While perfect models do not always exist in general, we show how to compute them for any instance of our fragment. This provides computational support towards the acquisition of key sets.


翻译:Codd的实体完整性规则规定,每个表格都有一个主键。 因此, 主键的属性包含独特和完整的值组合。 在实践中, 数据不能总是满足这样的要求。 先前的工作提出了控制实体完整性的高级键组概念 。 我们为验证某个特定键组是否保留在给定数据集上, 并展示其在真实世界数据上的效率, 我们为相关的隐含问题建立二进制分解, 并证明它的 CoNP 完整性 。 但是, 任意键组的单词具有更好的特性。 碎片具有单反常的特性, 在四进制时可以分解 。 因此, 我们可以在验证关键组之前将间接值最小化 。 虽然不总是存在完美的模型, 但是我们通常会显示如何在任何实例中计算这些元件 。 这为获取密钥集提供了计算支持 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
7+阅读 · 2020年10月9日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员