Stress is considered to be the epidemic of the 21st-century. Yet, mobile apps cannot directly evaluate the impact of their content and services on user stress. We introduce the Beam AI SDK to address this issue. Using our SDK, apps can monitor user stress through the selfie camera in real-time. Our technology extracts the user's pulse wave by analyzing subtle color variations across the skin regions of the user's face. The user's pulse wave is then used to determine stress (according to the Baevsky Stress Index), heart rate, and heart rate variability. We evaluate our technology on the UBFC dataset, the MMSE-HR dataset, and Beam AI's internal data. Our technology achieves 99.2%, 97.8% and 98.5% accuracy for heart rate estimation on each benchmark respectively, a nearly twice lower error rate than competing methods. We further demonstrate an average Pearson correlation of 0.801 in determining stress and heart rate variability, thus producing commercially useful readings to derive content decisions in apps. Our SDK is available for use at www.beamhealth.ai.
翻译:压力被认为是21世纪的流行病。 然而,移动应用程序无法直接评估其内容和服务对用户压力的影响。 我们引入了Beam AI SDK来解决这个问题。 应用程序可以通过SDK实时自控相机来监测用户压力。 我们的技术通过分析用户脸皮层区域的细微颜色变化来提取用户的脉冲波。 然后用户的脉冲波用于确定压力(根据巴夫斯基压力指数)、心率和心率变异性。 我们在UBFC数据集、MMSE-HR数据集和Beam AI内部数据上评估我们的技术。 我们的技术在每种基准中分别达到99.2%、97.8%和98.5%的心率估计精确度,比相竞方法差近两倍。 我们进一步展示了在确定压力和心率变异性方面平均为0.801的皮尔森相关关系,从而产生商业上有用的读数来得出应用程序中的内容决定。 我们的SDK可在www.beamheal使用。