Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: 1) in temporal axis, the values can be randomly or consecutively missing; 2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
翻译:交通流量预测最近引起了广泛的关注。 事实上,交通数据通常包含由于传感器或通信错误而缺失的值。交通数据中的时空特征给处理这些缺失值带来了更多的挑战,因为对于这些缺失值,传统的技术(例如数据估算)有限:1)在时间轴中,值可能随机或连续缺失;2)在空间轴中,缺失值可能同时发生在单个传感器或多个传感器上;最近由图形神经网络驱动的模型在交通预报任务上取得了令人满意的业绩;然而,很少有这类模型适用于这种复杂的缺失值环境。为此,我们提议GCN-M,即能够处理斯帕蒂奥时空环境中的复杂缺失值的图动网络模型。特别是,我们联合模拟缺失值处理和流量预测任务,同时考虑到基于关注的记忆网络中的本地Spatio时空特征和全球历史模式。我们提议了一个基于所学的地方-全球特征的动态图表学习模块。关于真实生命数据集的实验结果显示了我们拟议方法的可靠性。