In this paper, we focus on the challenge of learning controllable text simplifications in unsupervised settings. While this problem has been previously discussed for supervised learning algorithms, the literature on the analogies in unsupervised methods is scarse. We propose two unsupervised mechanisms for controlling the output complexity of the generated texts, namely, back translation with control tokens (a learning-based approach) and simplicity-aware beam search (decoding-based approach). We show that by nudging a back-translation algorithm to understand the relative simplicity of a text in comparison to its noisy translation, the algorithm self-supervises itself to produce the output of the desired complexity. This approach achieves competitive performance on well-established benchmarks: SARI score of 46.88% and FKGL of 3.65% on the Newsela dataset.


翻译:在本文中,我们侧重于在不受监督的环境下学习可控文本简化的挑战。 虽然这个问题以前曾为受监督的学习算法而讨论过, 有关未经监督的方法中的类比的文献是伤疤。 我们建议了控制生成文本产出复杂性的两个不受监督的机制, 即: 带控制符号的背翻译( 以学习为基础的方法) 和简单觉悟的波束搜索( 以解码为基础的方法 ) 。 我们通过编译反译算法来理解文本相对于吵闹的翻译的相对简单性, 算法自我监督本身就能产生所希望的复杂性产出。 这种方法在既定基准上取得了竞争性业绩: SARI 得分46.88%, Newselela 数据集的FKGL 得分为3.65% 。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年12月19日
Phrase-Based & Neural Unsupervised Machine Translation
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员