项目名称: 雷公藤内酯醇通过抑制基质硬化、阻止肌成纤维细胞活化而缓解放射性肺纤维化

项目编号: No.81473264

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 医药、卫生

项目作者: 陈纯

作者单位: 福建医科大学

项目金额: 60万元

中文摘要: 基质硬化及其信号通路是肌成纤维细胞(MFB)活化成熟的必需条件。抑制基质硬化及其信号通路,不仅阻止MFB活化,且为保存肺正常结构及功能所必需,因此是抗放射性肺纤维化(RILF)的关键。前期研究显示,减少MFB的活化是雷公藤内酯醇(TPL)抗RILF的重要途径,但TPL对基质硬化及其信号通路的作用尚不清楚。本研究通过应用体外基质硬化模型及体内小鼠RILF模型,探讨TPL对RILF中基质硬化及其信号通路的影响,以及此影响与MFB活化、肺组织结构与功能的相关性,以期阐明TPL抗RILF的关键机制,为TPL的抗RILF应用提供有力支撑。同时本研究将揭示基质硬化及其信号通路在RILF中的关键地位,为抗纤维化药物的研究提供新的思路。

中文关键词: 放射性肺纤维化;雷公藤内酯醇;肌成纤维细胞;基质硬化;信号通路

英文摘要: Matrix stiffness and its signaling pathway are the conditions necessary to activate myofibroblasts (MFB). Inhibition of matrix stiffness and its signaling pathways, not only prevented the activation of MFB, but also for the preservation of normal lung structure and function, and therefore play a key role in anti-radiation-induced pulmonary fibrosis (RILF). Previous studies have shown that reducing the activation of MFB is an important way in anti-RILF effect of triptolide (TPL), but TPL's effect on matrix stiffness and its signaling pathway are unclear. In this study, through the application of in vitro matrix stiffess model and in vivo RILF mouse model, we explore the effects of TPL on matrix stiffess and its signaling pathway , and the relevance of this impact on MFB activation, lung tissue structure and function, so to clarify the key mechanism of anti RILF of TPL. Meanwhile, the study will reveal the key role of matrix stiffness and its signaling pathway in RILF , and provide new ideas for the study of anti-fibrotic drugs.

英文关键词: Radiation induced lung fibrosis;triptolide;myofibroblast;matrix stiffness;signal pathway

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于渐进自蒸馏的鲁棒跨模态表示学习
专知会员服务
20+阅读 · 2022年4月13日
专知会员服务
55+阅读 · 2021年9月3日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
21+阅读 · 2021年5月1日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
41+阅读 · 2020年10月4日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
已删除
黑白之道
19+阅读 · 2018年12月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
【CVPR2022】基于渐进自蒸馏的鲁棒跨模态表示学习
专知会员服务
20+阅读 · 2022年4月13日
专知会员服务
55+阅读 · 2021年9月3日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
21+阅读 · 2021年5月1日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
41+阅读 · 2020年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
微信扫码咨询专知VIP会员