Crystal structure determines properties of materials. With the crystal structure of a chemical substance, many physical and chemical properties can be predicted by first-principles calculations or machine learning models. Since it is relatively easy to generate a hypothetical chemically valid formula, crystal structure prediction becomes an important method for discovering new materials. In our previous work, we proposed a contact map-based crystal structure prediction method, which uses global optimization algorithms such as genetic algorithms to maximize the match between the contact map of the predicted structure and the contact map of the real crystal structure to search for the coordinates at the Wyckoff Positions(WP). However, when predicting the crystal structure with high symmetry, we found that the global optimization algorithm has difficulty to find an effective combination of WPs that satisfies the chemical formula, which is mainly caused by the inconsistency between the dimensionality of the contact map of the predicted crystal structure and the dimensionality of the contact map of the target crystal structure. This makes it challenging to predict the crystal structures of high-symmetry crystals. In order to solve this problem, here we propose to use PyXtal to generate and filter random crystal structures with given symmetry constraints based on the information such as chemical formulas and space groups. With contact map as the optimization goal, we use differential evolution algorithms to search for non-special coordinates at the Wyckoff positions to realize the structure prediction of high-symmetry crystal materials. Our experimental results show that our proposed algorithm CMCrystalHS can effectively solve the problem of inconsistent contact map dimensions and predict the crystal structures with high symmetry.


翻译:晶体结构决定了材料的特性。 随着化学物质的晶体结构, 许多物理和化学特性都可以通过第一原理的计算或机器学习模型来预测。 由于生成假设化学上有效的公式相对容易, 晶体结构预测成为发现新材料的一个重要方法。 在我们先前的工作中, 我们提议了一个基于地图的接触晶体结构预测方法, 这种方法使用全球优化算法, 如基因算法, 以最大限度地匹配预测结构的接触图与实际晶体结构的接触图之间的匹配。 然而, 在以高度对称的方式预测晶体结构时, 我们发现全球优化算法很难找到能够满足化学公式的有效组合。 这主要是由于预测晶体结构的接触图的维度与目标晶体结构的维度。 这使得预测高对称晶体结构的晶体结构与在Wycock 位置预测时, 我们提议使用PyXtal的精确结构, 以有效生成和过滤的晶体体体结构的组合, 并且以我们精确的精确度对比法, 以我们精确的精确的精确度对比为我们的数据分析,, 以我们精确的精确的精确的精确的精确度结构 来显示我们的精确的精确分析,, 和精确的精确的对比,, 和精确的精确的对比,, 以我们的精确的精确的逻辑结构, 以我们作为我们的精确的精确的精确的精确的精确的精确的算法,,,, 和精确的精确的精确的对比, 以我们的精确的对比为我们的精确的精确的精确的算法 。

0
下载
关闭预览

相关内容

【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员