In this article, we first introduced the inflated unit Lindley distribution considering zero or/and one inflation scenario and studied its basic distributional and structural properties. Both the distributions are shown to be members of exponential family with full rank. Different parameter estimation methods are discussed and supporting simulation studies to check their efficacy are also presented. Proportion of students passing the high school leaving examination for the schools across the state of Manipur in India for the year 2020 are then modeled using the proposed distributions and compared with the inflated beta distribution to justify its benefits.


翻译:在文章中,我们首先引入了考虑到零或/和一种通货膨胀假设的膨胀的Lindley单元分布,并研究了其基本分布和结构特性。两种分布都显示是指数式全级家庭的成员;讨论不同的参数估计方法,并介绍支持模拟研究以检查其效果;然后采用拟议的分布和与膨胀的贝塔分布进行比较,以证明2020年印度曼尼普尔州高中毕业考试通过的学生比例为2020年印度曼尼普尔州学校毕业考试的模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
54+阅读 · 2020年10月11日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
11+阅读 · 2021年3月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员