Irregularly-sampled time series (ITS) are native to high-impact domains like healthcare, where measurements are collected over time at uneven intervals. However, for many classification problems, only small portions of long time series are often relevant to the class label. In this case, existing ITS models often fail to classify long series since they rely on careful imputation, which easily over- or under-samples the relevant regions. Using this insight, we then propose CAT, a model that classifies multivariate ITS by explicitly seeking highly-relevant portions of an input series' timeline. CAT achieves this by integrating three components: (1) A Moment Network learns to seek relevant moments in an ITS's continuous timeline using reinforcement learning. (2) A Receptor Network models the temporal dynamics of both observations and their timing localized around predicted moments. (3) A recurrent Transition Model models the sequence of transitions between these moments, cultivating a representation with which the series is classified. Using synthetic and real data, we find that CAT outperforms ten state-of-the-art methods by finding short signals in long irregular time series.


翻译:定期抽样的时间序列(ITS)是诸如医疗保健等影响较大的领域的原生领域,其间收集的测量时间间隔不均。然而,对于许多分类问题,较长时间序列中只有一小部分往往与分类标签相关。在这种情况下,现有的ITS模型往往没有对长序列进行分类,因为它们依赖于仔细估算,很容易地将相关区域标出过大或过低。利用这种洞察力,我们然后建议CAT,这是一个通过明确寻找一个输入序列时间表中高度相关的部分来将ITS分类的多变量模型。 CAT通过整合三个组成部分来实现这一点:(1) 一个动态网络学会利用强化学习,在ITS的持续时间表中寻找相关时刻。(2) 一个受体网络模型,在预测时刻左右对观测的时间动态和时间进行本地化。(3) 一个经常性的过渡模型模型,这些时刻之间的过渡顺序,形成一个序列分类的代号。我们利用合成和真实数据,发现CAT通过在长期不规则的时间序列中找到短信号,从而超越了10个最先进的方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2021年2月28日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员