Sketches are abstract representations of visual perception and visuospatial construction. In this work, we proposed a new framework, GAN-CNMP, that incorporates a novel adversarial loss on CNMP to increase sketch smoothness and consistency. Through the experiments, we show that our model can be trained with few unlabeled samples, can construct distributions automatically in the latent space, and produces better results than the base model in terms of shape consistency and smoothness.
翻译:策略是视觉感知和空间构造的抽象表达。 在这项工作中,我们提出了一个新的框架 — — GAN-CNMP, 其中包括了CNMP的新的对抗性损失,以提高草图的平稳性和一致性。 通过实验,我们证明我们的模型可以接受少量无标签样本的培训,可以自动在潜在空间进行分布,并在形状一致性和平稳性方面产生比基本模型更好的效果。