An aesthetics evaluation model is at the heart of predicting users' aesthetic experience and developing user interfaces with higher quality. However, previous methods on aesthetic evaluation largely ignore the interpretability of the model and are consequently not suitable for many human-computer interaction tasks. We solve this problem by using a hyper-network to learn the overall aesthetic rating as a combination of individual aesthetic attribute scores. We further introduce a specially designed attentional mechanism in attribute score estimators to enable the users to know exactly which parts/elements of visual inputs lead to the estimated score. We demonstrate our idea by designing an intelligent photography guidance system. Computational results and user studies demonstrate the interpretability and effectiveness of our method.
翻译:审美评估模型是预测用户审美经验和开发质量更高的用户界面的核心,然而,以往的审美评估方法基本上忽视了模型的可解释性,因此不适合许多人-计算机互动任务。我们通过使用超网络学习总体审美评级,将个人审美属性分数组合在一起,以此解决这一问题。我们还在属性评分估计中引入了专门设计的注意机制,使用户能够确切了解视觉投入的哪些部分/要素导致估计得分。我们通过设计智能摄影指导系统来展示我们的想法。计算结果和用户研究显示了我们方法的可解释性和有效性。