Modeling nonlinear spatiotemporal dynamical systems has primarily relied on partial differential equations (PDEs) that are typically derived from first principles. However, the explicit formulation of PDEs for many underexplored processes, such as climate systems, biochemical reaction and epidemiology, remains uncertain or partially unknown, where very sparse measurement data is yet available. To tackle this challenge, we propose a novel deep learning architecture that forcibly embedded known physics knowledge in a residual-recurrent $\Pi$-block network, to facilitate the learning of the spatiotemporal dynamics in a data-driven manner. The coercive embedding mechanism of physics, fundamentally different from physics-informed neural networks based on loss penalty, ensures the network to rigorously obey given physics. Numerical experiments demonstrate that the resulting learning paradigm that embeds physics possesses remarkable accuracy, robustness, interpretability and generalizability for learning spatiotemporal dynamics.
翻译:模拟非线性瞬间动态系统主要依赖通常源自最初原则的局部差异方程式(PDEs),然而,对于气候系统、生化反应和流行病学等许多探索不足的进程,为气候系统、生化反应和流行病学等许多探索不足的进程,明确制定PDEs仍然不确定或部分未知,目前尚有非常稀少的测量数据。为了应对这一挑战,我们提议建立一个新的深层次学习架构,强行将已知物理知识嵌入一个剩余经常美元(Pi$)的区块网络,以便利以数据驱动的方式学习时空动态。物理的强制嵌入机制与基于损失罚款的物理知情神经网络截然不同,确保网络严格遵从特定物理学。数字实验表明,由此形成的物理的学习模式具有显著的准确性、稳健性、可解释性以及学习时空动态的通用性。