Deep Reinforcement Learning (DRL) is hugely successful due to the availability of realistic simulated environments. However, performance degradation during simulation to real-world transfer still remains a challenging problem for the policies trained in simulated environments. To close this sim-to-real gap, we present a novel hybrid architecture that utilizes an intermediate output from a fully trained attention DRL policy as a navigation cost map for outdoor navigation. Our attention DRL network incorporates a robot-centric elevation map, IMU data, the robot's pose, previous actions, and goal information as inputs to compute a navigation cost-map that highlights non-traversable regions. We compute least-cost waypoints on the cost map and utilize the Dynamic Window Approach (DWA) with velocity constraints on high cost regions to follow the waypoints in highly uneven outdoor environments. Our formulation generates dynamically feasible velocities along stable, traversable regions to reach the robot's goals. We observe an increase of 5% in terms of success rate, 13.09% of the decrease in average robot vibration, and a 19.33% reduction in average velocity compared to end-to-end DRL method and state-of-the-art methods in complex outdoor environments. We evaluate the benefits of our method using a Clearpath Husky robot in both simulated and real-world uneven environments.


翻译:深度强化学习(DRL) 之所以非常成功,是因为有现实的模拟环境。 然而,模拟到真实世界转移期间的性能退化仍然是模拟环境中所培训的政策的一个棘手问题。为了缩小这种模拟到现实的差距,我们提出了一个新型混合结构,将经过充分训练的DRL关注政策的中间产出作为户外导航的导航成本图。我们的注意力DRL网络包含以机器人为中心的高地地图、IMU数据、机器人的构成、先前的动作和目标信息,作为计算导航成本图以突出不可移动区域的投入。我们在成本图上计算成本最低的路径,并利用动态窗口方法(DWA),对成本较高的区域进行高速限制,以便在高度不均匀的室外环境中遵循路标。我们的设计在稳定、可移动的区域产生了动态可行的速度,以达到机器人的目标。我们观察到成功率提高了5%,平均机器人振动率下降了13.09 %,平均机器人振动率下降了19.33%,同时,我们用更清楚的机器人方法对中程、更清晰的机器人环境进行了平均速度进行了评估。

0
下载
关闭预览

相关内容

通用动力公司(General Dynamics)是一家美国的国防企业集团。2008年时通用动力是世界第五大国防工业承包商。由于近年来不断的扩充和并购其他公司,通用动力现今的组成与面貌已与冷战时期时大不相同。现今通用动力包含三大业务集团:海洋、作战系统和资讯科技集团。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员