Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy information retrieval systems. Given the increasing use of complex machine learning models in search systems, explainability is essential in building and auditing responsible information retrieval models. This survey fills a vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and discusses recent explainability methods developed for different application domains in information retrieval, providing a common framework and unifying perspectives. In addition, it reflects on the common concern of evaluating explanations and highlights open challenges and opportunities.
翻译:可解释的信息检索是一个新兴的研究领域,目的是建立透明和可信赖的信息检索系统。鉴于在搜索系统中越来越多地使用复杂的机器学习模式,在建立和审计负责任的信息检索模式方面,解释性至关重要。这项调查填补了本来在专题上不同的可解释的信息检索文献中的一个重要空白。它分类和讨论最近为信息检索的不同应用领域开发的解释性方法,提供了一个共同的框架和统一的观点。此外,它反映了评价解释性的共同关切,突出了公开的挑战和机遇。