This paper presents a formally verified quantifier elimination (QE) algorithm for first-order real arithmetic by linear and quadratic virtual substitution (VS) in Isabelle/HOL. The Tarski-Seidenberg theorem established that the first-order logic of real arithmetic is decidable by QE. However, in practice, QE algorithms are highly complicated and often combine multiple methods for performance. VS is a practically successful method for QE that targets formulas with low-degree polynomials. To our knowledge, this is the first work to formalize VS for quadratic real arithmetic including inequalities. The proofs necessitate various contributions to the existing multivariate polynomial libraries in Isabelle/HOL. Our framework is modularized and easily expandable (to facilitate integrating future optimizations), and could serve as a basis for developing practical general-purpose QE algorithms. Further, as our formalization is designed with practicality in mind, we export our development to SML and test the resulting code on 378 benchmarks from the literature, comparing to Redlog, Z3, Wolfram Engine, and SMT-RAT. This identified inconsistencies in some tools, underscoring the significance of a verified approach for the intricacies of real arithmetic.


翻译:本文为伊莎贝尔/HOL中通过线性和二次虚拟替代(VS)进行一阶实际算术的正式核实的量化取消算法。 Tarski-Seidenberg 理论认为,真实算术的第一阶逻辑可以由QE去分。 然而,在实践中,QE算法非常复杂,而且往往结合多种性能方法。 VS是量化量化算法的一个实际成功方法,它针对的是低度多度多义公式的公式。 据我们所知,这是将VS正规化为包括不平等在内的二次真实算术的首次工作。这些证据需要对伊莎贝尔/HOL中现有的多变量多元图书馆作出各种贡献。 我们的框架是模块化的,易于扩展(以便利未来优化的一体化),并且可以作为制定实用通用的QE算法的基础。 此外,由于我们的正规化方法的设计是实用性的,我们将我们的发展输出给SML,并测试从文献中得出的378个基准的代码,与Redlog、Z3、Wolfram 发动机和SMT-RMAT方法中的某些重要之处。

0
下载
关闭预览

相关内容

【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月22日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员