Non-orthogonal multiple access (NOMA) is an interesting technology that enables massive connectivity as required in future 5G and 6G networks. While purely linear processing already achieves good performance in NOMA systems, in certain scenarios, non-linear processing is mandatory to ensure acceptable performance. In this paper, we propose a neural network architecture that combines the advantages of both linear and non-linear processing. Its real-time detection performance is demonstrated by a highly efficient implementation on a graphics processing unit (GPU). Using real measurements in a laboratory environment, we show the superiority of our approach over conventional methods.
翻译:非直线多重存取(NOMA)是一项有趣的技术,能够像未来5G和6G网络所要求的那样实现大规模连通性。虽然纯线性处理在NOMA系统中已经取得了良好的绩效,但在某些情形中,非线性处理是强制性的,以确保可接受的性能。在本文中,我们建议建立一个神经网络结构,将线性和非线性处理的优势结合起来。其实时探测性能表现在对图形处理器(GPU)的高效实施上。我们利用实验室环境中的实际测量,显示了我们的方法优于常规方法。