The key to personalized news recommendation is to match the user's interests with the candidate news precisely and efficiently. Most existing approaches embed user interests into a representation vector then recommend by comparing it with the candidate news vector. In such a workflow, fine-grained matching signals may be lost. Recent studies try to cover that by modeling fine-grained interactions between the candidate news and each browsed news article of the user. Despite the effectiveness improvement, these models suffer from much higher computation costs online. Consequently, it remains a tough issue to take advantage of effective interactions in an efficient way. To address this problem, we proposed an end-to-end Selective Fine-grained Interaction framework (SFI) with a learning-to-select mechanism. Instead of feeding all historical news into interaction, SFI can quickly select informative historical news w.r.t. the candidate and exclude others from following computations. We empower the selection to be both sparse and automatic, which guarantees efficiency and effectiveness respectively. Extensive experiments on the publicly available dataset MIND validates the superiority of SFI over the state-of-the-art methods: with only five historical news selected, it can significantly improve the AUC by 2.17% over the state-of-the-art interaction-based models; at the same time, it is four times faster.


翻译:个人化新闻建议的关键是使用户的兴趣与候选新闻准确而高效地匹配。 大多数现有方法将用户利益嵌入代表矢量,然后通过将用户利益与候选新闻矢量进行比较提出建议。 在这样的工作流程中,细微的匹配信号可能会丢失。 最近的研究试图通过模拟候选人新闻与浏览的用户每篇文章之间的细微互动来覆盖这一点。尽管效果有所改善,但这些模型在网上的计算成本上却要高得多。因此,要高效率地利用有效的互动,这仍然是一个棘手的问题。为了解决这一问题,我们建议了一个端到端的精选精选互动框架(SFI),并有一个学习选择机制。在这种工作流程中,将所有历史新闻输入到互动中,SFI可以快速选择信息性的历史新闻 w.r.t. 候选人,并将其他人排除在计算之外。我们授权这些选择既少又自动,这分别保证效率和效益。在公开的数据集上进行广泛的实验,以验证SFI优于状态。 为了解决这个问题,我们提议了一个端到端的精选精选的节互动框架(SFI) 框架(SFI) 与一个学习到选择的功能机制。只有5个历史节比速度更快的版本。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
66+阅读 · 2021年11月15日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
6+阅读 · 2017年12月2日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员